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du Triomphe, 1050 Brussels, Belgium

4 INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I50125 Firenze, Italy
5 Institute for Advanced Study, Princeton, NJ 08540, USA
6 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
7 Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena,

CA 91101, USA

Abstract. We briefly review the various machine learning methods and discuss how they
can be used in efficient identification and analysis of spectroscopic binary stars. They can be
treated as complementary to conventional methods, and we argue that some amount of human
oversight is always needed and in fact highly beneficial when employing machine learning. We
propose that a general dimensionality reduction technique can serve to diagnose and classify a
given data set, and in case of GALAH spectra, our method quite effectively reveals a population
of SB2 and SB3 systems. Once identified, the binary spectra can be analysed with the help of
generative models, which can be constructed using machine learning techniques such as The
Cannon and The Payne. Furthermore, in the case of spectroscopically unresolved multiple stars,
we can recover the multiple contributions to an observed spectrum by reversing the process and
proceeding from analysis to identification.
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1. Introduction

Binary stars are ubiquitous in stellar popula-
tions across the universe. They offer excep-
tional insight to star formation and evolution
(Duchêne & Kraus 2013), while also establish-
ing distances across our Galaxy and to its satel-
lites (Pietrzyński et al. 2013), providing crit-

? Hubble Fellow

ical tests in asteroseismology (Huber 2015),
and furnishing benchmark systems with ac-
curate fundamental stellar properties (Popper
1980; Stassun et al. 2009). The list goes on,
and although no one disputes the astrophysical
importance of multiple systems, they are of-
ten overlooked simply because their nature can
be quite effectively concealed in observational
data.
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However, the advances in machine learn-
ing, and the unprecedented volume of stel-
lar spectra from modern surveys (e.g. RAVE
Steinmetz et al. 2006, APOGEE (Majewski
et al. 2017), Gaia-ESO (Gilmore et al. 2012),
GALAH (De Silva et al. 2015), LAMOST
(Luo et al. 2015), WEAVE (Dalton et al. 2012),
4MOST de Jong et al. 2012), enable us to de-
vise new approaches for discovery and charac-
terisation of these fascinating associations of
stars, building upon the effort of previous stud-
ies (Matijevič et al. 2010; Gao et al. 2014;
Merle et al. 2017; Skinner et al. 2018; El-Badry
et al. 2018; Kounkel et al. 2019).

Due to ever increasing observed samples
of stars, it is now feasible to focus on char-
acterising the large scale statistical properties
of Galactic binary stars. This necessitates a
variety of observational techniques to identify
them across the full range of primary masses,
mass ratios, orbital periods, separations, eccen-
tricities, and ages/evolutionary states for dif-
ferent stellar populations and Galactic envi-
ronments (Duchêne & Kraus 2013). Thus ac-
quired knowledge of the fundamental statistics
of stellar multiplicity beyond the solar neigh-
bourhood can lead to a better understanding
of the outcome of star-formation process as
modelled by molecular cores and star-forming
regions (Parker & Meyer 2014; Lomax et al.
2015; Moe et al. 2019; Bate 2019). It can ad-
ditionally provide insight into the impact of bi-
nary populations on high-redshift galaxy radi-
ation and reionization, compact objects evolu-
tion, interpretation of multi-messenger astron-
omy, near-Universe constraints on the Hubble
constant, local measures of dark-matter sub-
structure masses, demographics of planetary
systems, and many other aspects of Astronomy
(for further explanation see Breivik et al.
2019).

Besides scientific data, large sample sizes
are nowadays present in many aspects of our
lives, and they range from our medical and
financial records to political beliefs and all
kinds of personal information that we willingly
share on a multitude of social platforms. Thus
the term “Big Data” came into common par-
lance, and it represents information of greatly
varying dimensionality, possibly collected au-

tomatically, and prepended with a timestamp.
This has proven to be a goldmine for newly de-
veloped “smart” mathematical algorithms, that
we sometimes mistakenly call A.I. (artificial
intelligence), which are to certain extents able
to tell apart pictures of dogs and cats, trans-
late texts, track insects, predict aircraft failures,
find new particles and new antibiotics, per-
form surveillance, target the right consumers
and voters, or determine chemical abundances
in the atmospheres of stars. These algorithms
are what we refer to as “Machine Learning
- ML”, and a graphical representation of the
tasks they encompass is in Figure 1. There are
many kinds of machine learning algorithms,
and their use for data analysis and knowledge
discovery in astronomical research dates back
to the previous century, with a continuously
growing popularity (Figure 2).

In this work, we discuss how distinct ma-
chine learning approaches can be merged to
efficiently discover and characterise double-
lined binary stars (SB2s) in a volume of stel-
lar spectra collected by the GALAH spectro-
scopic survey. GALAH is an ongoing project
with the aim to unveil the Milky Way’s history
by studying the fossil record of ancient star for-
mation and accretion events preserved in stellar
light. It is close to achieving its goal of obtain-
ing spectra of ∼ 1 million stars and measuring
up to 32 elemental abundances, which enables
the technique of chemical tagging (Freeman
& Bland-Hawthorn 2002). The survey is tar-
geting a randomly selected, magnitude limited
(12 ≤ V ≤ 14) sample of stars, collecting spec-
tra in three visual and one infra-red band, with
a resolution of R ≈ 28 000 and a typical SNR
∼ 100 (Buder et al. 2018). GALAH therefore
produces a highly suitable data set for extrac-
tion of a largely unbiased sample of spectro-
scopic binary stars which can be identified by
a line-of-sight velocity offset between the indi-
vidual components.

We first give a short general introduction
to machine learning techniques in Section 2,
and then present the procedure for identifica-
tion of double-lined stellar spectra in Section
3. The prospect of analysing detailed parame-
ters of both stars in a binary system is shortly
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Fig. 1. General scheme of machine learning utility (source: www.cookieegroup.com)

discussed in Section 4, and we conclude with
Section 5.

2. Machine learning techniques

We can try and describe machine learning in
one sentence: it is a process whereby we em-
ploy an algorithm, which, when presented with
real world data, is able to figure out its prop-
erties, and then we use the resulting tool (e.g.
decision maker, classifier, generative model
of data) to extract knowledge from a given
data set. Machine learning techniques can be
grouped in different ways, for example by the
amount of effort (apart from technical imple-
mentation) that we have to put in to make the
algorithm work. Hence we can first distinguish
between unsupervised and supervised meth-
ods.

2.1. Supervised methods

As the name implies, the supervised methods
require some kind of prior training on (prefer-
ably) real data. Training data thus becomes an
essential factor in determining the final utility
of the method, and defining the right training
sample can become quite an obstacle since it is
a task specific to a problem that we are trying
to solve. However, the advantage of supervised
methods is that we can obtain quantitative re-
sults for a given data set. This can be in the
form of values for the labels (parameters), the
probability that data belongs to a certain cate-
gory, or the actual reconstruction of the origi-
nal data. This brings us to a distinction between
obtaining some information (labels) from the
data or the reverse, creating data from the la-
bels, as explained below.

2.1.1. Discriminative algorithms

The discriminative type of algorithms are con-
ventionally used for the purpose of classifi-
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cation or prediction of the label values for
some data. They are relatively fast as they di-
rectly map some test data into label space.
There is a plethora of different methods that
fall under this category, e.g. logistic regres-
sion, linear discriminant analysis, support vec-
tor machines, conditional random fields, ran-
dom forests.

2.1.2. Generative algorithms

Quite the opposite of discriminative algo-
rithms, generative algorithms produce the
data based on some input labels. They can also
be used for classification or prediction pur-
poses, however in such a case we have to intro-
duce additional computational tasks for com-
parison of the data to the model. Generative al-
gorithms are gaining in importance or at least
popularity, with an obvious desire to produce
models which can replicate reality (e.g. gener-
ative adversarial networks, variational autoen-
coders).

2.2. Unsupervised methods

The unsupervised machine learning algo-
rithms1 are not pre-trained on any data, and
therefore have no prior knowledge of the spe-
cific context, e.g. physical laws. These meth-
ods can be broadly described by the similar
tasks of clustering and dimensionality re-
duction, and again there is a wealth of lin-
ear and non-linear techniques available to per-
form them, e.g. singular value decomposition,
principal component analysis, self organising
maps, locally linear embedding, DBSCAN, au-
toencoders, UMAP, t-SNE. The immense po-
tential of unsupervised methods lies in the abil-
ity to detect the unknown, may it be unwanted
outliers, noisy data, or new and unexpected dis-
coveries.

We will show how we can make a bridge
between the unsupervised methods and the
“supervised” end-product such as classifica-
tion, with a help of some human intervention.

1 Sometimes it is hard to decide whether an algo-
rithm is supervised or unsupervised (e.g. Generative
adversarial network - GAN)

Fig. 2. Astronomical publications with abstracts
containing “machine learning” (source: ADS).

This can give us the best of the two worlds: the
speed and efficiency of the machine learning
algorithm and the profound understanding of a
human user.

3. Detecting binary stars

Binary stars come in different flavours, and
we can distinguish them both by their phys-
ical and observational properties. From the
times of Benedetto Castelli and Galileo Galieli,
through the discoveries of William Herschel,
and looking onwards to the Gaia harvest of bi-
nary stars, we have coined a range of observa-
tional expressions for them: visual, resolved,
common proper motion, astrometric, spectro-
scopic, photometric, eclipsing. Although these
names refer to observational techniques used
to detect binary stars, they are also intimately
linked to a fundamental property of binary sys-
tems - their orbital period, itself tightly linked
to the semi-major axis of the binary orbit.

The widely accepted log-normal distribu-
tion of binary star periods is shown in Figure
3, and it has been confirmed by a range of au-
thors (Duquennoy & Mayor 1991; Duchêne &
Kraus 2013 and references therein). However,
we have yet to agree on the precise parame-
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Fig. 3. Log-normal distribution (frequency) of bi-
nary systems given their orbital period (source:
Boffin 2017).

ters of this distribution and in fact, on its valid-
ity when applied to diverse environments and
evolutionary histories. Nevertheless, this pe-
riod distribution predicts the number of binary
systems that we can expect to detect with dif-
ferent observational techniques as indicated in
Table 1.

Besides focusing on only one type of ob-
servational data, we are nowadays offered a va-
riety of large catalogues, which can be mined
to more efficiently extract as many binary stars
as possible, by e.g. looking for connections be-
tween astrometric and radial velocity variabil-
ity, or common proper motion and chemical
signatures of observed stars. However, as long
as we define exactly what such a mining algo-
rithm should extract from available catalogues,
in terms of e.g. parameter ranges or their com-
binations, we can not call that machine learn-
ing, as the algorithm is not actually trying to
figure out anything on its own.

A simple way of putting machine learning
to use, would be to merge information about
objects on the sky, as measured from diverse
all-sky surveys, and feed that to a clustering al-
gorithm, which is able to reveal the underly-
ing structure of the data. Thus, the algorithm
can potentially identify many clumps of ob-
jects which share similar properties. Such clus-
tering can be an essential advantage, since it is
inconceivable for a human to explore the multi-
dimensional space of original data (each prop-
erty of an object representing one dimension).

If the algorithm is instead performing dimen-
sionality reduction, or in other words mapping
the data from the original N-dimensional space
to a 2-dimensional map, the groups of similar
objects can become apparent also to the human
eye. This process can then lead to an efficient
classification of the data, and a powerful way
to diagnose and discover all kinds of features
or abnormalities.

The distinction between conventional and
machine learning approaches for discovery and
characterisation of spectroscopic binary stars
is further illustrated in the following chapters.
However, addressing the rest of the binary pop-
ulation, indicated by the orbital period distri-
bution in Figure 3, is beyond the scope of this
work.

3.1. Conventional methods for detection
of spectroscopic binaries

Spectroscopic binary (multiple) stars are de-
tected by the Doppler shift of absorp-
tion/emission lines in a spectrum. A notation
(SBn; n > 0) is agreed upon, which indicates
the number of distinct sets of lines. An SB1
spectrum means we only see spectral lines of
the brighter component in a binary system, an
SB2 means we can resolve both components,
and higher numbers denote the triple, quadru-
ple, etc. sets of detected lines, which corre-
spond to the number of stars in a multiple stel-
lar configuration.

SB1 binary systems can therefore be iden-
tified only with repeated exposures of the
same object through radial velocity variabil-
ity, whereas higher SBns can be readily identi-
fied in only one acquired spectrum per object.
There is no SB0 notation, thus if we know the
object is a multiple system but cannot be iden-
tified as such through the Doppler shift in spec-
tral lines, we call it a spectroscopically unre-
solved binary system. Likewise, in the case of
SBn systems, it is possible there are additional
components contributing to the combined light
in the spectrum but are not resolved.

The standard techniques for detection of
spectroscopic multiple stars have mostly relied
on examining the scatter of the radial veloc-
ity values for the same object (SB1s; Matijevič
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Table 1. Observational techniques for detection of binary stars.

Binary star type Observational technique for detection

visual, resolved imaging
common proper motion proper motions, radial velocity
astrometric epoch astrometry (positions)
spectroscopic doppler shift of spectral lines
photometric, eclipsing variability in the light curve, eclipses

et al. 2011; Merle et al. 2020; Birko et al.
2019), or the multiple peaks of the cross-
correlation function (SBns; Matijevič et al.
2010; Merle et al. 2017; Kounkel et al. 2019).
Detection of SB1s can be hampered by many
instrumental, data reduction, and other fac-
tors that originate from the physics of ob-
served stars (Merle et al. 2020). Analysis of
the cross-correlation function (CCF) can suf-
fer from similar effects, however, advanced
schemes, like the one presented by Merle et al.
(2017) and improved in Van der Swaelmen et
al. (in prep.; see also Van der Swaelmen et al.
2018), can improve the situation significantly.
For example, Figure 4 demonstrates that exclu-
sion of strong hydrogen lines significantly en-
hances the visibility of a double peaked profile,
the signature of SB2s.

The work by El-Badry et al. (2018) has re-
cently introduced a method for efficient detec-
tion of unresolved binary components in stel-
lar spectra. In short, this is achieved by com-
paring whether a double component model is
a better fit to data than a single component
model. Although defining the criteria for this
distinction is a manual effort, machine learn-
ing was employed in this work for construction
of a data-driven generative model of single star
spectra (see Section 4). Their method makes it
possible to identify many long-period binaries
like the one in Figure 5, in which the velocity
offset between the two stars is negligible.

Fig. 4. Effect of the exclusion of Hα and Hβ in the
solar template on the width of the CCF for an ex-
ample GALAH SB2 candidate spectrum. The de-
crease of the CCF peak width reveals the presence
of a second close component difficult to detect when
Hα and Hβ are included (demonstrated here on the
first and third GALAH spectral bands which include
Hβ and Hα, respectively).

3.2. Machine learning techniques for
detection of spectroscopic multiple
stars

All spectroscopic binaries can not be attacked
by the same identification approach, if not for
other reasons, the SB1s for example necessi-
tate an extra dimension in observations - time
(temporal sampling). We hereby focus only on
those objects, where the light in a single spec-
trum can reveal the multitude of gravitation-
ally bound emitting bodies. Detection of spec-
troscopically unresolved multiple stars will be
briefly addressed in Section 4, whereas the rest
of this section is dedicated to detection of SBns
for n ≥ 2.
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Fig. 5. Spectrum of an unresolved main-sequence
binary with mass ratio q = m2/m1 ≈ 0.7 as ob-
served by APOGEE. Top panel shows the full nor-
malised spectrum. Middle panel shows the spectrum
and best-fit binary and single-star models. The bi-
nary model fits the data significantly better than the
single-star model. Bottom panel shows the two com-
ponents of the best-fit binary model (adapted from
El-Badry et al. 2018).

In general, we would like to have an al-
gorithm, that given some input data, decides
whether that data is an SBn or not. We can ac-
complish this with a classifier, which can sort
all input data into a set of categories. However,
in order to train a machine learning algorithm
to reliably sort our data, we need to manually
define all the classification categories and feed
the method a large enough sample of represen-
tative objects for each category - the training
set. Besides the significant amount of manual
work needed for that, the downside of this su-
pervised approach is the inability of the classi-
fier to properly recognise any kind of data that
doesn’t fit into any of the defined categories.

We propose a more unsupervised approach,
which can handle both known and unexpected

types of data, and at the same time “catches”
SB2 or higher order multiples. It consists of:

1. a smart visualisation of the whole data set,
2. manual inspection and definition of classi-

fication categories,
3. automatic selection of groups of similar

objects.

This is not a direct approach of mapping data to
labels as mentioned in Section 2.1.1, but rather
a scheme, where the user is actively engaged,
which we argue is still much more reliable than
letting the machines figure out everything.

3.2.1. Visualisation of data by
dimensionality reduction

When presenting data points of dimensional-
ity (number of features) higher than e.g. 3, we
usually face a challenge of condensing all that
information in the same plot. However, dimen-
sionality reduction can efficiently map high di-
mensional data on a regular 2-dimensional sur-
face - a projection map. In the case of stellar
spectra, dimensionality of original flux space
can be very high (e.g. 10 000 dimensions – pix-
els), however a dimensionality reduction algo-
rithm can still preserve the important features
of the spectra by mapping them in the “right”
place on the 2-dimensional map. In such a pro-
cess, some information is inevitably lost, how-
ever if the algorithm is “smart” enough, the im-
portant information is retained, revealing the
global as well as the local structure of our data.

A plethora of options are available for the
task of dimensionality reduction, from linear
to non-linear ones, and from those that are use-
ful for the process of classification described in
this work to those that fail. We will first com-
ment on a technique that is in principle promis-
ing, but does not produce the desired result in
our use case. We consider a type of a neural
network called an autoencoder, whose graph-
ical representation is in Figure 6. This tech-
nique of reducing dimensions is instructive, as
it is fairly intuitive in what it does, and at the
same time introduces the basic functionality of
neural networks. Explained in the most sim-
plistic terms, the neurons (circles) in the net-
work in Figure 6 are fully connected to each
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Fig. 6. Structure of an autoencoder, one specific
type of an artificial neural network that can be used
for the task of dimensionality reduction.

other, and these connections are weighted. The
weights are optimised so that the information
from the input (left side) is transferred through
the network to the output in such a way, that
the output reproduces the input as faithfully as
possible. Figure 6 shows that some informa-
tion is, as predicted, inevitably lost. We must
now imagine that there are hundreds of images
on the input. If the structure of the autoencoder
is optimised, the encoder embeds the most im-
portant features of each image in the two neu-
rons (2 dimensions) in the middle layer in such
a way, that the decoder can reproduce the orig-
inal image from those two values.

There is a lot that can be tuned in a gen-
eral neural network (e.g. the number of lay-
ers or neurons, the type of activation functions
between neurons). However, our experiments
with autoencoders did not produce satisfactory
results. The 2-dimensional map with the values
from the middle two neurons of an autoencoder
fed by GALAH spectra is shown in Figure 7.
The position of points in the map is optimised
such that the corresponding spectra are faith-
fully reproduced at output by the autoencoder.
However, for a human, it is difficult to recog-
nise groups of similar data points in this map
without the help of colour-encoding. The sit-
uation is even worse for categories other than
those marked in the two panels.

This is because the autoencoder is tasked
with reproducing the original data at the out-
put, in whatever configuration of the network
that achieves that goal. It is not encouraged to
produce a visually appealing and to the human
user more useful mapping. Luckily, there are

other methods which do just that, and we argue
that t-SNE (t-distributed Stochastic Neighbour
Embedding) is good at fulfilling this task. The
mathematical details of the t-SNE method are
explained in the original work by van der
Maaten & Hinton (2008), and we only offer a
brief summary here.

The objective for t-SNE is to minimise
the divergence between pairwise similarities of
data points in the original data space and the
corresponding pairwise similarities in the pro-
jection space2. Therefore, two similar stellar
spectra will be placed close together in the pro-
jection map, and the very dissimilar ones will
be far apart. In addition, t-SNE solves the issue
of crowding the data points in a small area of
the map, such as seen in Figure 7, and which
plagues many other dimensionality reduction
techniques. The t-SNE projection of GALAH
spectra is in Figure 8 (for more information see
Traven et al. 2017 and Buder et al. 2018).

t-SNE performs extremely well in reveal-
ing the global as well as the local structure of
the data3. Figure 8 for example shows a clear
distinction between regions of dwarfs and gi-
ants, or regions of hotter and cooler stars, since
these properties are one of the most impor-
tant features in the GALAH spectra. More lo-
cally though, we can observe a progression of
less prominent features, such as for example
metallicity. Furthermore, the clear boundaries
between different large islands of data points
enable us to distinguish between significantly
diverse spectra, and we describe this process
below.

3.2.2. t-SNE Explorer - a user-friendly
interface to data

Without any colour-encoding such as the one
in Figure 8, it is difficult to predict what kind
of stellar spectra are projected in which island
of points. That is why we designed a power-
ful visual interface to a t-SNE projection map,

2 Technically we are minimising the Kullback-
Leibler divergence (information entropy loss)

3 Even in the case of very few data points, one can
synthesise mock ones to investigate where they are
positioned in the t-SNE map.
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Fig. 7. Dimensionality reduction of GALAH spectra produced by an autoencoder (see Figure 6). Each point
represents one spectrum. Previously classified spectra are in red (left: SB2s, right: cool giant stars).

that we nickname the t-SNE Explorer. It is a
web–based tool, featuring the t-SNE map split
into hexagons. Clicking on these small slices of
the map, we immediately examine the average
shape of the spectra contained inside, and can
view them individually as well. Colour coding
can be changed depending on which informa-
tion is available about the investigated objects,
and it can help guiding the user to specific ar-
eas of the map (e.g. hot stars).

3.2.3. Automatic selection of similar
objects

Once we decide on the classification category
to assign to a certain island of points in a t-
SNE map, we can automatically select them
on the basis of their density structure. A gen-
eral clustering algorithm DBSCAN (Ester et al.
1996) proved to be the most efficient in se-
lecting these islands of points in the projection
map without a priori knowledge of the number
of points or the overall structure of the island.

The functionality of t-SNE, t-SNE
Explorer, and DBSCAN allows the user to effi-
ciently determine the classification categories
for the investigated data set, and with the help
of colour coding by previous classification
efforts, to update the classification as the
data set grows. The final result of the above
described process for classification of GALAH
spectra contained in GALAH DR2 is in Figure
8.

Two types of SBn systems are identified in
the t-SNE map in Figure 8, SB2s being counted
in thousands and SB3s in dozens. The t-SNE

detection of SB2 objects can be complemented
with the CCF detection as described in Section
3.1. We show the detected SB2 systems in an
HR diagram in Figure 9. We see differences
between both approaches to detection, on the
one hand, in the number of detected SB2s, and
on the other hand, in the efficiency of detec-
tion in different parts of the parameter space
of GALAH data. This implies that both ap-
proaches of detection not only produce false
positives, but also miss some obvious candi-
dates (false negatives).

Our philosophy for detection of SBn sys-
tems is that different methods can be merged,
in order to have as little missed detections as
possible, however we can live with many false
positives as they can be rejected further on in
the analysis process.

4. Analysing binary stars

We can benefit significantly from machine
learning techniques not only in the identifica-
tion process, but also during analysis of our bi-
nary candidates. For the latter, our philosophy
is to use all available observational data and a
good mixture of model and data driven meth-
ods to extract as much information as possi-
ble from the detected SB2 candidates (Traven
et al.(submitted)Traven, Feltzing, Čotar, team,
et al. 2019).

In the case of Bayesian analysis of
SB2 objects as presented in Traven
et al.(submitted)Traven, Feltzing, Čotar,
team, et al. (2019), we use spectroscopic,
photometric, and astrometric information to
derive a comprehensive set of parameters
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Fig. 8. t-SNE projection map of 587 153 spectra. Top: Colour coding of 413 920 spectra by stellar parame-
ters as given in Buder et al. (2018), others are plotted as black points. Bottom: Colour coding by classifica-
tion category. The majority of stars do not show peculiarities and are shown as black dots. The flagged triple
stars (SB3) are few and hardly seen next to the lower left group of binary stars (SB2), whereas the Hα/Hβ
emission stars are on the far right and bottom right in the map. The count of spectra for each category is
given in the legend.



Traven et al.: Machine learning techniques meet binaries 337

Fig. 9. HR diagram using only Gaia magnitudes and parallaxes for GALAH single stars (grey) with marked
SB2 detections by CCF (left panel) and the t-SNE process (right panel) as explained in the text.

for each detected SB2 system (e.g. Teff[1,2],
log g[1,2], [Fe/H], Vr[1,2], R[1,2], E(B − V)).
Among other ingredients, we also need a
spectroscopic model to compare to the spec-
troscopic data. We therefore make use of a
generative algorithm (supervised machine
learning technique) called The Cannon (Ness
et al. 2015) in order to construct a generative
model of observed GALAH single-star spec-
tra. Having defined the generative model, we
can construct an SB2 template by summing to-
gether single-star spectra that the The Cannon
model generates based on a set of labels for
each of the binary components.

However, The Cannon is a polynomial in-
terpolation method which tries to model the
flux of observed spectra at each wavelength
with a (usually quadratic) function of the la-
bels. The Cannon model can be made more
flexible by going to higher order functions
of the labels. However, due to the complex-
ity of the change in flux with varying labels,
other methods have been proposed recently
to accommodate the need for higher flexibil-
ity of the model. One of them is The Payne
(Ting et al. 2018), approximating flux varia-
tion through neural networks, and a compari-
son of performance between The Cannon and
The Payne is seen in Figure 10.

As demonstrated in El-Badry et al. (2018),
a spectral model obtained by a machine learn-
ing method employing neural networks can be

fitted to all observed stellar spectra, without a
priori identification of multiplicity. In this way,
the detection and analysis process is effectively
reversed, but El-Badry et al. (2018) are thus
able to identify spectroscopically unresolved
binary stars, a huge advantage if we want to
probe long-period binary systems (Figure 5).

5. Discussion and conclusions

We have shown how machine learning tech-
niques can be applied in the discovery and
analysis of multiple stars, where the signature
of multiple components is embedded in their
spectra. There are many ways to do that, and
we discuss a few use cases where unresolved
spectroscopic binary stars and those which ex-
hibit multiple lines in the spectra are probed
efficiently.

We demonstrate that classification of any
observational data can be a powerful tool, help-
ing us to (1) highlight all problematic data with
unpredictable effects from either instrumenta-
tion or reduction stages, and (2) identify any
peculiar spectra that are interesting per se and
merit further investigation (e.g. binary stars).
We present one way to efficiently perform clas-
sification by t–SNE (van der Maaten & Hinton
2008) reduction of spectral information, and
we describe how modelling the spectral flux
can be used to infer labels (parameters) of ob-
served multiple stars.
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Fig. 10. High-fidelity spectral flux interpolation and prediction by The Payne (orange), compared to The
Cannon (blue). The dashed line shows the expected flux variation at individual pixels (wavelengths) with
different label variations. The three panels show three different scenarios where quadratic model does not
approximate the flux well, whereas the neural network approach has no issues (adapted from Ting et al.
2018).

Whether we proceed from identification to
analysis, or vice-versa, machine learning tech-
niques (e.g. t-SNE, DBSCAN, The Cannon,
The Payne) can aid in recognising the bina-
rity and extracting binary parameters in a given
data set. Nevertheless, human intervention in
the whole process is still irreplaceable, as some
methods require a certain amount of training
or tuning, and even if left completely unsuper-
vised, different effects can often mimic bina-
rity (multiplicity) in observed data (e.g., Merle
et al. 2017). We are still at the level of machine
learning development where our methods can
be easily fooled, however this field has an im-
mense potential, and it can also be a lot of fun.
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